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ABSTRACT

This report presents a general procedure for numerical design opti-

mization based on the feasible direction finding problem (DFP) of

Zoutendijk. The DFP is reformulated herein to allow treatment of multiple

objective functions and efficient treatment of equality and inequality

constraints. This new DFP formulation is combined with an adaptive move

strategy to produce a Mathematical Programming (MP) algorithm applicable

to a broad class of nonlinear MP problems with continuous variables in-

cluding generalized mini-max problems occurring in control and structural

system design. The application of this procedure to structural optimiza-

tion is described in detail.
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I. INTRODUCTION

The numerical design optimization problem is usually posed in

Mathematical Programmning (MP) form as:

Find xsuch that

f(x) = min f(x)()

g() < 0 j 11l29-AJ (2)

hk(') = 0 k 1 l,2, ... K (3)

where x is the continuous system design or control variable vector with

components, xi, i = 1,2,...1 f(x) the objective function and g.i(x) and

h k W the constraint functions. Numerous approaches to the solution of

this problem are now is use [11.1

For many engineering design applications a single objective function

of the form of Eq. (1) is inadequate to de~fine the design objectives [2-41.

Reference [2] describes a pair of two variable bearing design problems with

competing dual objectives which are treated by trade-off methods. Goal

programuing [5] is used in Ref. [3] to treat a metal removal optimization

problem. Both [2] and [31 treat the multiple objective function problem by

converting it to one of several single objective function forms to reduce

the problem to the conventional MP form of Eqs. (1-3).

In design applications one often encounters a form of mini-max problem

in that the determination of the objective or constraint functions given a

set of design or control variables involves the solution of an optimization

problem with respect to another to another variable set (state variables).

'Numbers in brackets designate references cited at the end of this report.

7.2 -.- 7
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This situation arises frequently in optimal control and structural optimi-

zation problems. Thus an MP formulation more general then that given by

Eqs. (1-3) and a procedure for its solution, is needed for many applica-

I tionsConsider the important field of structural optimization. Extensive

literature exists on numerical structural optimization [6]. It is well

known that optimal structures are characterized by the frequent presence

of multiple active (critical) behavior modes. Simultaneous failure mode

concepts were widely used in optimal design [7] prior to the use of the

more current Mathematical Programming (MP) and Optimality Criteria (OC)

numerical optimization methods pioneered in structural applications by

Schmit [8] and Venkayya [9] respectively.

Although multiple failure or behavioral modes are commonly considered in

earlier works the treatment of mode coalesence is often inadquate. For

example structural design MP fi'mulations typically consider only a single

general instability constr,. t dO-11] where several should be included.

It may be seen from the contour maps of the buckling load surface given

in [12] that several general buckling modes can be active in near optimal

designs. When using a numerical technique to treat such problems one must

consider all active behavior modes in the determination of search moves.

If this is not done then moving so as to reduce or avoid a violation in

only the most critical mode considered may result in an increase in a near-

ly critical mode that was not considered. This mode may then become

critical after the move producing move failure.

* When the behavior modes occur in the problem constraints multiple

active modes may be treated conventionally by associating a separate
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constraint with each active mode since constrained numerical optimization

techniques normally treat multiple constraints 1131. When, however, the

objective function involves behavior, multiple active behavior modes produce

a multiple objective mode mini-max problem. This situation was not

recognized until recently [4]. Thus studies such as that of Ref. [14] in-

volving optimal frequency separation considering only separation between

only two modes will not in general yield an optimal solution since simul-

taneous separation of several mode pairs is required [4].

Most structural optimization problems requiring numerical methods are

some variant of the mini-max problem. For example, weight optimization is

usually subject to constraints on maximum stress or minimum buckling load.

Frequently of course, the determination of thle behavioral optima is trival

and need not be explicity included in the general optimization problem.

Often, however, it is not. Unfortunately, the literature, with few ex-

ceptions [12], contains little on the application of numerical procedures

to the determination of behavioral optima.

Most general MP procedures require several hundred or even several thou-

sand sets of constraint and objective function evaluations [115] to achieve

an optimum. Such computational effort is prohibitively expensive in many

applications which require considerable effort for each objective or con-

straint function evaluation. Thus, for example, one sees the development of

special algorithms for the optimal design of structures modeled by Finite

Elements utilizing the special properties of such problems in order to pro-

duce usable optimal design capabilities [6]. An effective general MP

procedure for optimal design must be substantially more efficient than most

existing MP procedures if current computationally demanding analysis techniques
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* are to be exploited for optimal design. It usually makes little sense to

optimize a design using inferior anlytical models because the more compu-

tationally demanding and more accurate methods are incompatable with op-

timal design procedures.

This report proposes and examines a general procedure for dealing with

such problems. It describes a highly efficient, rigorous general procedure

for the solution of an expanded MP problem applicable to a wide range of

design optimization applications including those with the multiple object-

ive functions and mini-max problem types. The method maintains the multiple

objective function in its formulation and procedure and does not resort to

subjective or other conversion procedures to reduce the multiple objective

MP problem to one involving only a single objective function. Also described

are various mini-max forms encountered in such problems and methods for

treating these problem forms.
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II. PROBLEM FORMULATION

The general design optimization problem may be written as: Find the

optimal values i of the design variables x and the associated state

variable vector t with components tp p = 1,2 ...P so as to simultaneously

- minimize with respect to x all f (x) where
q

f CX) = max F q(x,t) q = 1,2,...Q (4)

t

This may be restated as: Find R and t such that

f q(i,) = smin max Fq(x,t). (4a)

x t

The minimizations of Eqs. (4) are subject to the conditions of Eqs. (2 & 3)

where some or all of the constraints are of the form

gj(x) = max G (x,t) < 0 (5)
3- t

hk(x) = max Hk(xt) = 0 (6)
t

It is convenient to remove the regional constraints from Eq. (3) by separa-

ting constraints of the form

Z u
x.<x.<xx. (7)

iix i < xi < (7

"- t (8)F p _ _ p

Z u
where xi and xi are the lower and upper limits respectively on design vari--e u

able components x and t and t the lower and upper limits on the statea p p
variable components tp. This problem will be referred to here as the

p-
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generalized mini-max problem. Equations (1-3) are a special case of

Eqs. (4-6) where Q = 1 and no maximization with respect to the state

variables is needed.

A variation of the mini-max objective function optimization problem

of Eq. (4) or (4a) often stems from a maximum performance problem where

: the objective minimization is given by

Findi and t such that

f(i ,) = min max F (x,t) (9)

x,q q

This can be restated in the multiple objective function form of Eq. (4)

for solution as will be shown in Section IV. Bronowicki et al [14] pose

a frequency separation problem where a single objectiv function is of the

form of Eq. (9) with q = 1,2 being identified with shell panel and general

shell vibration respectively and the state variables with the vibration axial

and circumferential wave mode integers. The coalesence of vibration modes

as the optimum is approached requires simultaneous separation of several

frequencies [4]. Thus one has the need for the consideration of several

objective modes and an appropriate method for treatment of such problems.

In the composite cylinder study of Ref. [16] over twenty buckling modes are

7active in some optimal designs.

The solution to the general problem of Eqs. (4-8) may be approached

iterating the control or design variables

X = R(Xr) (10)

where R is the recursion relation defined by the search strategy. The maxi-

mization sub-problems of Eqs. (4-6) are solved at each point x
r

,- .: . _ :_. : ' - _ . . _ , . . ._ _ - . .. . .-- . . . .
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III. GENERAL MINIMIZATION (CONTROL VARIABLE) PROCEDURE
L.'

In light of the fact that a general procedure for design optimiza-

tion requires the treatment of constrained problems with multiple objective

modes in addition to the conventional MP problem the idea presented in

Ref. [4] is adapted to the procedure proposed here. The procedure of [41

utilizes a direct "Pattern" search coupled with the Zoutendijk direction

finding problem (DFP) [17], modified to treat multiple objective modes.

The DFP is further modified using the ideas explored in [18] so as to

greatly improve its convergence power. The direction finding problem is

further modified here to allow movement in the infeasible region. The

symmetric penalty method of Refs. [11,19] is utilized here for the purpose

of comparing feasible and infeasible po4nts in the move strategy.

The procedure is given by the following steps:

0 0 0
I. Select an arbitrary initial point xB and define xT xB.

With r = 0

2. evaluate Cq(xr) if not previously determined where

SCq(x) = fq(x) + P(x) (11)q q q

P q(x) = maxx {xgj <gj(x)> or xqkhk(X)} (12)

q ~~ jq gjqkk(

kU gj = '-(13)
Kggj > jl(

and xqk similarly defined where IAI is the magnitude of vector A, V

* the gradient of scalar function , K1 an arbitrary large positive

C * .. ----. .-,
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number and Ejl a band width parameter defining excess constraint violation

[11,19]. The bracket function is defined as

<q> =0 4<0
(14)

<> = 0 > 0

rr

3. At point x set up the DFP and find a and Sr so as to:

maximize a (15)

subject to the conditions

Sr "Vfr + <0 q 1,2,...Q (16)

r 0 (17)
S vg + gj <0 JJAO gj(xr) j2

Sr vhk +hr 0 k = 1,2,...K (18)

(SZr < Si _ i = 1,2,...I (19)

where r is a constraint activity band width parameter and (Sf)r and
wee j2

(sU)r are upper and lower limits on Sr which are given by

x- fxi  if xi  x
S£ or (20)
S =otherwise

u L- x ii

xi if x - x i < 21)i (
Si, otherwise

where is a specified maximum limit on the change in variables.

-S"
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4. If Sr is sufficiently small i.e. if

1Sri < E3  (22)

where E3 is an arbitrary small variable convergence parameter then the de-

sign is considered optimal and the procedure is terminated. Otherwise

define a comparison base

"r = r + Sr  (23)

and evaluate all Cq(Xr).

5. If xr =xr and anyT B
C(X) > C(X)(24)

w r rcall xr = r otherwise call x r if any
. cll T  xB  B T fn

. Cq(Xr) > Cq(X4) (25)

then repeat steps 2 and 3 with a halved
J,

6. Otherwise call
" r+l r (6

XB  = (26)

Now i.f for all objective functions

i[Cq(XB+1) - C q(X]/C (X+l ) or < £4 (27)

ICq(X + 1)1

where e4 is an arbitrary small objective function convergence parameter the

design is considered optimal and the procedure is terminated.

7. Otherwise define a new temporary base
r! x+l = rxc r

XT xr + A(Xr-xr) (28)

where A > 0 is a move acceleration parameter. Now increase r by one and

repeat steps 2-5. Continue the process until Eq. (22) or (27) is satisfied.
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This solution of DFP of Eqs. (15-21) will designated a move S which,

based on local linearization appears, to be the best possible for a given

specified maximum permissible change a in variable values. This DFP differs

from that of Zoutendijk [17] in that it admits multiple objective functions

[41 and tends to drive the design as necessary to a location estimated to be

on the constraint boundary rather than tending to move the design parallel

to or deflected away from this boundary [18]. The relaxation here of the

usual non-negativity requirement on a allows a design move from the in-

feasible region to produce an increase in objective function value in such a

manner as to keep such increase at a minimum while producing movement to a

location on the estimated critical constraint boundary. This allows movement

in the feasible region.

The penalty function of Eqs. (11-13) is needed to allow the comparison in

Eq. (24) and (25) of the desirability of a point in design space for the purposes o

determining a suitable value of step size ar needed to avoid excessively

large moves and to prevent oscillation. For example for a problem as illus-

trated in Fig. 1 the initial a0 would produce convergence without any need

for step size reduction. For a problem such as that illustrated in Fig. 2

however oscillation about the optimum would result unless ao is reduced. The

penalty form is used in preference to the objective function alone since a

move which produces substantial constraint violation reduction with some

* increase in objective function value is generally more desirable than a move

that produces the reverse situation. The penalty form is thus preferable

for comparison.

For most engineering design problems where optimal designs are on a

constraint boundary, A =0 is preferred since the design move will then be
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Figure 1 Synthesis Path Where the Optimum is at a Corner



-12-

ro Rel#,4/-T/4V SY

sr / IAF RIFDVAW'

Figure 2 Synthesis Path Where the Optimum is not at a Corner



-13-

equal to the estimated best move S. However in some situations where the

optimal design is unconstrained and the objective function surface is in

the form of a ridge A = 0 will not produce efficient movement since in this

case the procedure reduces to an ordinary gradient search and such a search

is not well adapted to such surfaces [20]. For such problems A = 1 is

recommnended. Such a value of A produces a "pattern" [20] type ridge climb-

ing search (modified per Section IV) a illustrated in Figure 3.

From Fig. 3 it can be seen that the move S provides the turning component

for movement along a curved ridge. The basic procedure can be modified to

improve such movement by utilizing the gradient information and information

generated by the move. Thus where A k 0 is used if the move S fails to im-

prove the design compared to the temporary base use the gradient information

at point x T and the changes in C qresulting from the move to construct Q

quadratic approximations to C along a line with the direction of S. Now
q

if there is a point along this line where on the basis of these approximations

a better design can be located move to that point and call it x c* Then con-

tinue with the procedure. This feature has been incorporated into the pro-

cedure illustrated in Fig. 3.

The problem of Eqns. (15-21) may be put into ordinary Linear Programiing

(LP) form by the variable transformation [18,21]

S =s' + (29)

51u =SU + St (30)

and 1-02=(31)

so that now the LP variables are S! a1 and a2 where
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01>0

(32)
02 > 0

The upper limits on Scan be conveniently treated by a bookkeeping proce-

dure and need not effc t problem size or significantly increase computational

effort [21].

Several factors must be weighed when evaluating a numerical optimiza-

tion procedure for a particular application. Problem characteristics which

should be considered are; the number and nature of the problem variables and

objective and constraint functions; problem topology; computational effort

associated with function evaluation and the search algorithm execution; and

the admissible range of location of the initial points of the optimal search.

The procedure described above has the flexibility to efficiently treat

a wide variety of problems including those with single or multiple linear

and nonlinear objective and constraint functions. It includes regional con-

straints without significant added effort. It admits infeasible starting

points without resort to a separate algorithm for such points. Furthermore

it can combine the ridge climbing properties of the Pattern type searches

- with the rigour of the gradient based methods.

This procedure exchanges the simple derivative free evaluation of local

function topology of Refs. [ll and 19] with a much more complex but also

more effective gradient based method. The use of the simple local search

may be desirable where the problem employs simple easy to evaluate functions

since the computational effort associated with formulation and solution of

the DFP may greatly exceed that associated with the need for additional
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function evaluations resulting from a less effective local search. The simple

search can also be more desirable where the functions are not differentable.

High efficiency ishowever, usually not of great importance in problems employ-

ing easily evaluated functions since optimal designs can be generated in such

* - cases at low cost with many conventional MP procedures. Optimization algor-

ithm efficiency is of great importance in problems where design analysis is

computationally demanding. Since most engineering design problems possess

well behaved derivatives and since in cases where total computation is of

importance this effort may be reduced by introducing optimization algorithm

computation in order to minimize the number of computationally demanding

objective or constraint function evaluations the added complexity of the pro-

posed procedure is justified.

1.A
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IV. MAXIMIZATION (STATE VARIABLE) PROCEDURE

" In the general mini-max problem at each search point in the minimiza-

tion (design) problem one must solve the state variable problem. Often the

solution in known, assumed, or results directly form the determination of

behavior. In such cases there is no need to search for this solution. This

is true where, for example, one knows, or assumes the location of the

maximum stress or if one computes buckling behavior from the matrix solution

of the eigenvalue problem where the eigenvalues are automatically ordered.

In other cases the solution can be obtained analytically. The case where a

numerical solution to such problem is required is considered here. This

section is concerned with the solution and nature of the maximization problems

of Eqs. (4-6).

The choice of numerical procedure reflects the nature of the problem

characteristics. For state variable optimization these are that the problem

is often characterized; by a flat topology with a low ridge, frequent multiple

local optima; a single objective function; only regional constraints; and

relatively few variables. The feasible region is thus easily located in such

problems. Furthermore in the mini-max problem in the search for the maximum

7%- the initial search point is often near the maximum point if one uses the op-

timum of the previous maximization as the initial search point for the new

I " maximization problem. This latter characteristic is due to the fact that in

the design variable search since behavior is often not drastically altered

after a design variable move the topology of the state variable problem will

likewise not be drastically changed. This is particularly true during the

latter stages of the design variable search.



-18-

First consider the integer state variable problem. Ref. [121 describes

a procedure for treating such problems and gives the rationale for its use

in buckling constraint applications. It utilizes an integer variant of the

Dichotoinus search [20]. The appropriate boundaries are searched and local

optima located. The interior is then searched using a sequential search with

a corner check. Often this procedure requires only an evaluation of in-

tegers near the optima since the function topology is often similar to the

previous search.

In the study of Ref. [16] the procedure always produced the minimum

frequency. The extremely difficult buckling load surface (see Fig. 4)

would, however, produce occassional failure as the design variable optimum

is approached. In the neighborhood of the design variable optimum the be-

havior function surfaces in terms of the state variables are often character-

ized by the presence of more than one local behavioral maximum and a behavior

surface, that although quite flat, nevertheless includes a narrow sharply

curved ridge containing one of these optima [12,16]. Figure 4 illustrates a

cylindrical shell buckling load surface where there are more than a dozen

buckling modes within 1% of the critical value. On such surfaces there is

really no reliable alternative to a regional exhaustive search. Thus, it is

advisable at the point of design variable search termination to perform an

exhaustive search of such functions. If there is excessive error then the

general optimization procedure is restarted using an exhaustive search for

the location of each such sub-problem maximum.

Structural design often involves the problem: Find the

max oZ(n,m) (34)
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Stiffened shell buckling or free vibration behavior are examples. Here

one can identify panel, stiffener or general vibration or buckling with

index Z = 1,2,3 respecti.ely where for each Z there exist modes associated

* with wave numbers n and m.

Usually an individual constraint equation is established for each mode

C [8,10,11,141. However as shown in [41 and [13] one must also establish a

constraint for each active or potentially active mode associated with n, and

m to avoid false moves. Thus adapting the constraint designation procedure

of [13] for each active integer combination v of the state variables

t = Z, n, m establish an active objective function F a a = 1,2,...A l where

F (xt) - f (xt) < Cq5 q 1,2,...Q (35)

an active inequality constraint set G a< 0 a = A1 + 1, A1 + 2,...A 2 where

G(x,t) - gj(x,t) < j: ,2,...J (36)

and an active equality constraint set Ha, a A2 + l, A2 + 2,...A where

H (x,t) - hk < q5 k= 1,2,...K (37)

The functions F a Ga and H acA replace functions f , gj and hk in Eqs.aa

(16-18) of the DFP thus allowing treatment of multiple active behavior modes.

Further the zeros of the right hand side of Eqs. (16) can be replaced by the

difference betwen f and its associated F allowing a larger change in F thanq a a
F thereby allowing Fa to equal f after the move. Thus Eqs. (16) can be re-

placed by

ST  avF + a <F a - fr a = 1,2 ...A1  (38)

in the case of multiple active objective function behavior modes.
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Now consider maximization with respect to the continuous state variables.

Although the flexibility of the general minimization procedure is not needed

here it is nevertheless applicable to this usually simpler problem. In fact

its ability to handle surfaces with curved ridges and only regional variables

quite efficiently (when using A = 1) makes it an attractive candidate method

for this problem. Furthermore, substantial simplification of a computer

program for optimal design can be achieved if both the minimization and

maximization techniques are similar.

Of course the complexity of the DFP is considerably reduced for the case

of a single objective function with only regional constraints. For multi-
Z

variable problems where regional constraints are not active (S -

S a) the procedure reduces to a form of ridge climbing gradient search.

Here there is no need to solve the LP problem but rather one may use

S = avo /Imaxvol, where jmax vol is the magnitude of the largest of the

*components of vo, 0 is the function for which a maximum is being sought and

ais a step length scalar (see Fig. 3). Where there is only one variable the

* - procedure reduces to a reasonably efficent line search without the need to

* - formally solve the LP problem since the solution can be determined by in-

spection as S =+ a depending on the sign of dcp/dt. Furthermore by minor

modification of the procedure one can eliminate the need to compute

derivatives with respect to the state variables by initially assuming a sign

* for do/dt and then estimating the sign at a point by the change in o pro-

duced by a given move.
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V. DERIVATIVES

In the general mini-max problem a question arises as to how to treat

the computation of the design and state problem derivatives and whether

derivative coupling exists. For example say that one attempts to determine

some stress behavior function gradients by use of finite differences. The

question arises as to whether the change in control variable will produce

a change in the location of the point of maximum stress and thus, after

making the finite difference incremental change, whether one needs to solve

again the maximization problem. Similarly, will an incremenati change in

the control variables change the value of the critical integers of the integer

maximization sub-problem? A similar question arises in the evaluation of

analytical derivatives.

The question of how to treat modes typical of the integer problems

during differentiation with respect to the design variables is handled by

associating a individual function with each active integer mode. Thus the mode use

in the evaluation of derivatives is taken as the one associated with the

derivative being sought. There is, therefore, no need consider the state

variables in computing the design problem derivatives. The question of how

to consider the continuous state variables during differentiation with re-

spect to the design variables may be answered by observing that since the

state values are optimal they are either stationary or at the region boundary

during this process. Thus either the effect of change is negligible or they

can not be changed. Thus the change in state variables may be ignored when

evaluating design problem derivatives. The design variables are of course

parameters in the state variable problem and thus changes in the control

variables are not considered in evaluating state problem derivatives.
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ag VI. ALGORITHIM CONTROL PARAMETER SELECTION

The performance of the above procedure depends on the selection of the

parameters ejls ej2' c3$ i' KI, and A. The test associated with cjl is

needed because the equation for computing X from the first of Eqs. (13) used

to generate a reasonably symmetric "boundary ridge (191 is based on the

assumption of local linearity. Thus Eq. (13) would fail to provide an

appropriate penalty too far away from the constraint boundary and therefore

the required values of cjl for a given j depends on the degree of nonlinearity

of constraint g. with the needed ejl decreasing as nonlinearity increases.

Extensive experience with this penalty function form indicates that a value

of Ejl = 0.1 for all gj is satisfactory where the constraints are given in

a non-dimensional form

gj= (B. - U )/U. U. % 0 (39)

where B. represents the controlled behavior and Uj the upper limit on be-

havior even for highly nonlinear functions.

The specification of band width parameters j2 for inclusion of inequality

constraints in the DFP is optional. The only purpose of these parameters is

to allow the designer to reduce DFP computational effort by excluding ob-

viously inactive constraints. This band width 5j2 required to avoid violation

of a constraint not considered active in the DFP after a seach move depends

on constraint sensitivity and step size. Several adaptive schemes are

N l possible. The procedure of Ref. [18] uses

Ij2r/c2 I~rIoI (40)

The c? can be arbitrarily selected where when gj is of the form of Eq. (39).
J
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CJ2= 2n is recommended where n represents an estimated fractional change

in the objective function resulting from a move IcP1 as described below.

Alternately one can establish a value for £j2 by defining these values

by

r 2

£j2 = F min (ja/gJi)Ivgj 2 jE J (41)

where O'i designates differentiation with respect to variable xi. All

constraints not in the potentially active set J are ignored with respect

to the DFP. This band width will, based on a linear estimate, provide with

a factor of safety of F that all constraints which could be violated by a

move in the vgj direction where the components are limited to ar (the worst

possible move with respect to the violation of gj) are included in the DFP.

Potentially active constraints are all those within a band width double the

largest band width of the constraints in the previous DFP. Initially the

potentially active band width is arbitrarily selected with a value equal to

2n where the gj are given in the form of Eq. (39) and n is as defined below.

A value for F = 1 recommended since this band width will usually avoid vio-

lation of "inactive" constraints and since infeasible designs are admissible.

As a further alternative one can arbitrarily select the r2, say by use

of Eq. (40),and set up and solve the DFP. Potentially active constraints

(j J) not included can be checked by determining if it appears that on the

* basic the gradients of these constraints they will be violated after a move

[18]. Those constraints which can apparently be violated are then added to the

active set and the DFP reformulated. The new DFP can be solved with relatively

* olittle effort using the basis of the former solution [21]. This process is

repeated until no new constraints enter the DFP. The potentially active set

can be selected as in Ref. [18].
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The parameters eq5 can be defined in the same fashion as the cj2. The10
values for a? can be arbitrarily selected or using the concept of Ref. [18]

in modified form by given by: All

o? nf*q(xo)Imax(f* .)/Ivf* 12  (42)

where f* is associated with q producing max Ivf I and n is arbitrarily
q q q

F selected. The quantity n is halved so as to produce the required change

in ar needed in step 4 of the procedure of Section III. Here n is the

estimated fractional change in vf* if a move were made the vf* direction
q q

with components limited to ar. Thus n may be thought of as an attempted

objective function reduction where n = 0.5 would be an attempt at a 50%

reduction. The actual reduction would usually be substantially less than

estimated since the actual move would be deflected away from the objective

gradient direction by the active constraints. This would be particularly

true at the latter stages of the search where the design is usually more

highly constrained. Thus this formulation would have the effect of scaling

down objective function changes as the optimum is approached and movement

is more difficult. A value of 0.25 for n is recommended.

It is advisable to reduce step size in the event that a direction re-

versal in moving from xT to xc after a move from xB to XT produces too small a

'difference between xB and xc thus producing oscillation or a decelerated pattern

movement [15]. Thus if

r

halve a and compute a new S until Eq. (43) is not satisfied. A value of

K2 = 0.5 has been found to be satisfactory after extensive experience with

this and earlier procedures.
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The selection of the move expansion parameter is discussed in Section

III. A value A = 0 seems preferable for most cases except where there are

no active constraints where A = I seems more desirable. Using the procedure

of Section III it seems better in most design problems to make large moves

initially and reduce move length as needed rather than using the conventional

MP strategy of expanding move length based on success of earlier moves.

This assumption has yet to be tested.
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VII. INTERACTIVE OPTIMAL DESIGN

With few exceptions, such as the work of Michaud and Modrey [221,

numerical design optimization has been employed as an "automated"3 design

tool which attempts to locate an optimal solution without designer inter-

vention. In most design situations, including design optimization, such

* intervention is desirable for a variety of reasons most of which are dis-

cussed in [22]. Efficient synthesis algorithms capable of convergence to

* an optimal design are well suited to interactive optimization since most re-

design cycles result in substantial changes in design detail. Thus the

designer can follow and guide the design process at each redesign step

* providing maximal utilization of designer skill without requiring a large

designer effort. Such interactive optimal design is particularly desirable

on comnputationally demanding problems where a skilled designer can reduce

the total computational cost required to generate an efficient design.

Many intervention strategies can be employed for interactive optimi-

zation. The procedure illustrated in Fig. 5 is suggested here. It should be

noted that the decision steps in the automated procedure coincide with

corresponding decision steps in the interactive procedure, the procedure

can be terminated by the operator at any time. The automated and intervention

type procedures differ only in that in the intervention type additional con-

trol is given to the designer so that designer judgement which cannot yet

be programmned can be used to guide the design process. Designer control

can be made optional and thus a design capability based on the procedure of

* Fig. 5 can be fully automated. For a specific, rather than general, design

programs where designer judgements required at the decision steps can be

rationalized, some or perhaps even all, of these steps can be put uvider
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machine control thus reducing or eliminating designer intervention.

This suggested approach has yet to be tested. A substantial amount of

research is needed to evolve effective means of data display and designer

interrogration. Early efforts have been initiated at New Jersey Institute

of Technology toward the development of an interactive optimal design

capability based on the procedures described herein.

-oJ
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VIII. EXAMPLE PROBLEMS

A number of problems, selected to illustrate the application of the

numerical optimization method given herein and to provide a Preliminary

test of this method, are described in this section. These problems are

treated by modifying earlier computer programs used to solve these problems

[4,15,18] to incorporate the new optimization method. The modified programs

contain all features of the new procedure except that the upper limits on

S. are included in the DFP as additional linear constraint relations. This
*1

was done because the LP solution subroutine of this preliminary study did

not include a bookkeeping procedure for handling upper limits. The added

t computational requirements produced by the inability of the programs utilized

to efficiently treat upper regional constraints somewhat penalizes the new

procedure in these preliminary studies where comparison is based on total

computational effort. Accurate data for comparison on the basis of the

number of function evaluations and number of design iterations is, however,

provided by these examples.

* Except as noted all runs used the suggested value-of the algorithm

control parameters given in Section VI with e3 = 4=16 and ej2 and cEq5

determined by Eqn. (41) and a by Eqn (42). All runs used the same parameters

and starting points as the earlier studies of these examples. All except

the ten bar truss problem use forward difference estimates of the gradient

* . components.

1. Ten Bar Truss [9,18,23]

These problems are described in Fig. 6. They are now classic bench-

mark problems which represent a difficult challenge for numerical optimization
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methods. These problems are employed to illustrate the use of this method

on a conventional MP problem and to provide a comparison of the general

method with highly effective specialized structural optimization methods

developed to treat such structures modeled by finite elements [9,18,23].

The stress constrained problem 1 has eight (of ten) stress constraints

critical at the optimum. The displacement constrained problem 2 has two

rather similar local optima. One local minimum has two critical displacement

constraints and the other one critical stress constraint and one critical

displacement constraint. Both problems have active regional constraints.

The procedure used for this study is similar to that of Ref. [181 ex-

cept that the scaling boundary restoration of [91 is not used. Termination

is by Eq. (22) or (27) with £3 = c410 -4. Further the penalty function of

Eqs. (11-14) rather than weight is used for design comparison for the purpose of

step size and constraint bandwidth reduction, and no non-negativity constraint

on a is used. Scaling is used only to define the initial design (as in [18])

where all members are of equal cross-sectional area. Finite elements analysis

is used to determine behavior. Analytical objective function gradients are

used and constraint gradients are determined by the virtual unit load method

0
[9,23]. Runs were made with n = 0.1,0.2,0.3,0.4 and 0.5 for both problems.

The new method converged to an optimum using an average of 18% fewer

reanalysis cycles (11-14 reanalyses required) than the procedure of Ref. [18]

kg on the stress constrained problem and an average of 35% fewer reanalyses for

the displacement constrained problem (14-21 reanalyses required). Except for

the initial and terminal points the interim designs are generally slightly

Li infeasible. All designs are, however, considered acceptable from a practical

viewpoint with violations of typically less than one percent. Improved



convergence is the result of a larger weight reduction per step at a given

step size and less frequent and delayed step size reduction resulting from

-: elimination of weight increases after scaling.

* 2. Maximum Minimum Frequency and Maximum Frequency Separation [41

These problems are descirbed in Fig. 7. They were selected since

they illustrate the application of the new optimization method proposed here-

in to problems of multiple objective function form. Further they provide

data for comparison of the new method with the optimization method of

Ref. [4,15]. The optimal designs are characterized by many active free

vibration frequency modes of similar frequency or mode pairs with similar

frequency separation. In addition the maximum weight and web buckling con-

straints are active at the optimal designs and in the case of the minimum

frequency maximization problem the shell yielding constraint is also active.

The procedure for this study is similar to that of Ref. [4] except that no

pattern search is used here and the DFP of [41 does not include the improve-

ments of Ref. [18] (improved weighting term) and those described here. In

addition the method of Ref. [4] employs several ad-hoc procedures not needed

with the new method. Further because of the difficulty of the problem the

study in Ref. [4] uses a smaller initial step size about one tenth of that

used for the present study. The integer search of Ref. [12] is used here as

in Ref. [4] to locate the minimum frequency or other needed modes.

The number of function evaluations typically required to achieve the

level of convergence achieved in [41 using the new procedure is approximately

two orders of magnitude less than required by the procedure of Ref. [4].

An average of 710 objective and constraint function evaluations were required

with the new method compared to 62,000 with the procedure of Ref. [4]. This
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dramatic improvement is the result of the improved DFP used here. (Note;

most function evaluations are needed for derivative estimation).

, 3. Eason and Fenton's Test Problems [24]

The ten benchmark problems of Eason and Fenton [241 were solved using

the new procedure by a computer program CADOP5 [25] developed by modifying

the CADOP3 program of [15]. The problems are all relatively small (2-5

variables). Four are unconstrained at the optimum. These ten problems as a

group represent a relatively difficult test set. None of the seventeen

L' optimization codes tested in Ref. [24] solved all the problems. A typical

code solved only half. Only the CADOP codes have been reported as solving

all ten problems. CADOP3 [15] is similar to the procedure of Ref. [4] and

differs from the CADOP5 as described above. CADOP4 [26] is similar to CADOP3

except that a "Boundary Tracking" pattern search, not using a penalty function

or local exploration but rather, using a boundary restoration after a pattern

move is employed in place of the pattern search of [15]. Unfortunately this

boundary restoration procedure was found to be unreliable in later tests on

CADOP4 failing on the 10 Bar Truss Problem.

A detailed description and analysis of the performance of CADOP5 on these

problems is given in [251. Thus only a summary is given here. When only

problems constrained at the optimum are considered CADOP5 is appreciably

faster than any of the codes tested by Eason and Fenton. Compared to the other

CADOP codes CADOP5 is slightly faster than CADOP4 and about five times faster

than CADOP3 on these problems. Using the number of function evaluations re-

quired for convergence for comparison CADOP5 typically achieved a given levela
of convergence on these problems with about half the number of function evalu-

ations required by CADOP4 and roughly one tenth those required by CADOP3.

%'

- - ~ .
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Thus even for these relatively small problems the increased computational

effort associated with setting up and solving the DFP at every point was

more than offset by improved search efficiency. On the four unconstrained

problems CADOP5 was found to be comparable in speed to the fastest of the

codes tested by Eason and Fenton. It was therefore substantially faster than

* the other CADOP codes on these problems. Reduction in the total computational

effort associated with CADOP5 can be achieved on problems with active regional

constraints by eliminating use of upper regional constraint limit equations

in the DFP and employing the bookkeeping procedure of [21] for their treat-

men t.

4. Composite Plates and Shells [16,271

The optimization procedure described herein was also used to treat

the optimal laminated filimentary composite shell study of Ref. [16] and the

composite plate study of Ref. [27]. The composite shell problem is similar

to the minimum freuqency maximization except that in addition to regional
N

constraints, only a single linear constraint E T.i < H is used, where the

Tare the thickness variable, N the tiuaaber of such variables and H half the

shell thickness. The composite plate problem requires the minimization of

the maxima of several stress response modes. The single continuous state

variable for this problem is associated with the space variable in the direct-

ion normal to the plane of the plate. The constraints are similar to the

shell problem. The design variables for these problems are the layer ply

angles and thicknesses.

The results of these studies is reported in Refs. [16 and 27]. In

summnary optimal designs in these maximum performance problems are character-

ized by several or even many active objective function behavior modes and
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thus several or many multiple objective functions. The optima are typically

unconstrained. The design variable optimization procedure for this problem

therefore reduces to an unconstrained multiple objective function optimal

search employing a multiple gradient and pattern move strategy. Convergence

typically required about 50 reanalysis cycles.
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IX. CONCLUSION

The general design variable optimization procedure is found to be

effective on a number of example problems. These include mini-max problems,

problems with multiple objective functions as well as conventional MP bench-

mark problems. The potential power of the improved DFP formulation has been

demonstrated in a recent study where, what is basically a less efficient

version of this procedure, was found superior to the Optimality Criteria

methods against which it was compared. These latter methods have received

wide recognition as powerful tools for synthesis of structures modeled by

finite elements [6].

This paper presents a unified treatment of the general numerical design

optimization problem which appears on the basis of formulation and experi-

ence to be flexible, efficient, and robust (reliable) for a broad range of

such problems. Additional studies of its performance are of course needed

and additional refinement may be desirable. The procedure described herein,

however, forms a relatively rigorous base for a powerful yet general synthesis

capability with less resort to ad-hoc procedures often found in numerical

optimization techniques. Experience with the procedure has indicated that

results are not strongly dependent on initial choice of starting point or

algorithm control parameters and that estimating reasonable values for these

is straightforward.

;4
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